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ABSTRACT  

Humpback whales undertake long-distance seasonal migrations between low latitude winter 

breeding grounds and high latitude summer feeding grounds. We report the first in-depth 

population genetic study of the humpback whales that migrate to separate winter breeding 

grounds along the north-western and north-eastern coasts of Australia, but overlap on 

summer feeding grounds around Antarctica. Weak but significant differentiation between 

eastern and western Australia was detected across ten microsatellite loci (FST = 0.005, P = 

0.001; DEST = 0.031, P = 0.001, n = 364) and mitochondrial control region sequences (FST = 

0.017 and ΦST = 0.058, P = 0.001, n = 364). For both marker types, Bayesian clustering 

analyses could not resolve any population structure unless sampling location was provided as 

a prior. This study supports the emerging evidence that weak genetic differentiation is 

characteristic among Southern Hemisphere humpback whale populations. This may in part 

reflect the circumpolar distribution of summer feeding grounds that lack continental barriers, 

allowing for extensive whale movement.  

Keywords: mtDNA, microsatellites, population genetic structure, conservation, management, 

Megaptera novaeangliae 
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INTRODUCTION 

For many marine species, ecological and environmental discontinuities such as ocean 

currents, changes in bathymetry and ocean temperature are increasingly being identified as 

cryptic barriers to gene flow and dispersal (Kaschner et al. 2006, Knutsen et al. 2009, Unal 

and Bucklin 2010, Mikkelsen 2011, Shen et al. 2011). The influence of social and learnt 

behaviors that may also establish or reinforce population boundaries are less understood. 

Such factors may be highly relevant to cetacean species that exhibit complex communication 

and social behaviors and where migratory behavior is thought to be learned through  social 

inheritance from the mother to the calf (Clapham 1996, Hauser et al. 2007). Therefore, 

despite their high vagility, cetaceans may exhibit highly structured populations primarily 

driven by non-physical barriers (Hoelzel 1998).  

Like other balaenopterid species, humpback whales undertake long-distance seasonal 

migrations between low latitude winter breeding and calving grounds and high latitude 

summer feeding grounds (Figure 1, Mackintosh 1965). These whales also exhibit a large 

range of social and sexual behaviors, have strong maternal fidelity, and are renowned for 

their repertoire of complex culturally acquired ‘songs’ and calls (Clapham 1996, Noad et al. 

2000, Valsecchi et al. 2002, Smith et al. 2008). Historically, humpback whale populations 

have been defined based on the distribution of calving areas and migratory routes and so have 

been treated as management units in the apportionment of catch quotas for commercial 

whaling (Kellogg 1929, Chittleborough 1965, Mackintosh 1965, Dawbin 1966). More 

recently, because demographic studies are difficult to undertake, genetic analysis of 

mitochondrial (mtDNA) and nuclear markers has been applied to gain insights on population 

structure, dispersal and mating systems.  
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Much of what we know about population differentiation among humpback whales has 

resulted from studies in the Northern Hemisphere, where whales are geographically separated 

by the American and Asia-European continents (Baker et al. 1986, Palsbøll et al. 1995, 

Calambokidis et al. 1996, Clapham 1996, Palsbøll et al. 1997a, Clapham et al. 1999, 

Calambokidis et al. 2001, Calambokidis et al. 2008). Within each ocean basin, individuals 

show strong fidelity to specific foraging areas and mix on common breeding grounds 

(Calambokidis et al. 2001, Stevick et al. 2006). 

In contrast to the Northern Hemisphere where foraging areas are numerous and discrete, 

humpback whales in the Southern Hemisphere have a circumpolar distribution on high 

latitude feeding grounds in the Southern Ocean. On their annual migration, they segregate 

onto seven low latitude breeding areas which are widely distributed around oceanic islands 

and specific coastal regions proximate to continental shelf areas (Mackintosh 1965). With no 

continental barriers to dispersal on feeding grounds, there is the potential for frequent 

movement between populations as described for other marine megafauna (Bonfil et al. 2005, 

Boyle et al. 2009).  

Two putative populations of humpback whales occur along the coasts of Australia. One 

migrates along the eastern seaboard and is thought to mate and calve within the Great Barrier 

Reef, the other migrates along the western seaboard and mates and calves off the Kimberley 

coast off western Australia (Jenner et al. 2001). During the 20th century, Australian 

humpback whales were hunted along both the eastern and western migratory corridors and 

intensively in their Antarctic feeding grounds (Mackintosh 1965). By the time commercial 

whaling ceased in 1963, the western Australian population was estimated to be fewer than 

500 animals from approximately 17,000 prior to 1934 (Chittleborough 1965, Bannister 1994), 

and the eastern Australian population was reduced to as few as 100 individuals from a pre-
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exploitation abundance estimate of between 16,022 and 22,957 (Chittleborough 1965, 

Paterson et al. 1994, Jackson et al. 2008). Recent data has shown that both populations are 

recovering strongly with the current rate of increase at about 10-11% per annum (Bannister 

and Hedley 2001, Noad et al. 2008, Salgado Kent et al. In press). Absolute abundance for 

western Australian humpback whales is currently estimated at 21,750 (95% CI 17,550-

43,000) (Hedley et al. 2009) and 14,522 (95% CI 12,777-16,504) for eastern Australia (Noad 

et al. 2011). 

The degree of connectivity between the Australian populations is poorly understood but 

migration between the populations has been documented. During the 1950s and 1960s 

stainless steel ‘Discovery’ marks were shot into whales and some were then recovered when 

the whales were killed and flensed. This approach provided the first means of tracking the 

movement of whales over large distances and periods of time (Mackintosh 1965, Dawbin 

1966). For example, in the summer of 1958-59, from a total of ten whales originally marked 

in the Southern Ocean south of eastern Australia, two were recovered later that winter off the 

western Australian coast, indicating some movement between breeding populations 

(Chittleborough 1961, 1965; Dawbin 1966).   

Here, based on extensive sampling, we specifically evaluate (i) the population genetic 

structure among the eastern and western populations of Australian humpback whales by 

examining variation in both maternally inherited mtDNA and biparentally inherited 

microsatellite markers for both sexes, (ii) extend previous analyses of mtDNA variation 

among humpback whales in Oceania and western Australia by combining our data with 

Olavarria et al. (2007) to include eastern Australia, (iii) compare and contrast our findings 

with other studies of humpback whales and consider the ecological implications of the 

emerging genetic patterns. 
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METHODS 

Population definition in the Southern Hemisphere 

The International Whaling Commission (IWC) currently recognizes seven breeding 

aggregations in the Southern Hemisphere as ‘populations’ A to G, with questions remaining 

about further subdivision around Africa, Australia, and the South Pacific (Chittleborough 

1965, Mackintosh 1965). The humpback whales that migrate along the west and east coasts 

of Australia are recognized as putative population D and subpopulation E1 respectively. 

Subpopulations E2 and E3 (Tonga and New Caledonia), and F1 and F2 (Cook Islands and 

French Polynesia) are often referred to in IWC literature as ‘Oceania’ which is listed 

separately by the IUCN as endangered (IWC 1998, Childerhouse et al. 2009). 

Sample collection, DNA extraction and sex identification 

A total of 364 biopsy samples were collected from humpback whales. These samples were 

collected from eastern (Eden, New South Wales; eastern Tasmania) and western Australia 

(Exmouth). The timing and location of the sampling is presented in Table 1. Samples were 

collected using a biopsy dart propelled by a modified 0.22 caliber rifle and then stored in 

70% ethanol at -80˚C (Krützen et al. 2002). Total cellular DNA was extracted from skin 

tissue using a standard salt extraction technique (Aljanabi 1997), or an automated Promega 

Maxwell ® 16 System. Sex was determined using a fluorescent 5’exonuclease assay 

producing PCR product from the ZFX and ZFY orthologous gene sequences (Morin et al. 

2005). 

Microsatellite loci 

Samples were genotyped at ten polymorphic microsatellite loci including nine dinucleotide 

repeats [EV1, EV14, EV37, EV94, EV96 (Valsecchi and Amos 1996); GT211, GT23, GT575 
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(Berube et al. 2000); rw4-10 (Waldick et al. 1999)] and one tetranucleotide repeat 

[GATA417 (Palsbøll et al. 1997b)]. To allow simultaneous amplification of several loci in 

one PCR reaction, we used a Qiagen Multiplex Kit for the following sets of loci: set 1 (EV37 

and GT23); set 2 (EV14, EV96 and GATA417; set 3 (EV1, EV94 and GT575) and GT211 

and rw4-10 individually. For each locus, one of the primers within each pair was labelled 

fluorescently at the 5’ end to allow for visualization of alleles on an automated sequencer. 

Each PCR had a final volume of 12.5µl and included: 1x Qiagen Multiplex PCR Master Mix 

(containing HotStarTaq®DNA Polymerase, Multiplex PCR Buffer, MgCl2 and dNTP mix), 

2µM of each primer (labelled and non-labelled) and 1 to 8ng of template DNA (estimated 

using a NanoDrop spectrometer 3300). The thermocycling profile consisted of an initial 

denaturing step of 95˚C for 15 minutes, 30 cycles (30 s at 94˚C, 90 s at 58˚C annealing, 60 s 

at 72˚C) followed by a final extension step of 30 minutes at 60˚C, with the exception that the 

optimal annealing temperature for the single locus reactions (GT211 and rw4-10) was 53˚C. 

Fluorescently labelled PCR products were resolved on an ABI 3130 automated sequencer. 

Allele sizes in base pairs (bp) were determined using the LIZ-500 size standard run in each 

lane. Microsatellite alleles were visualized and scored using GeneMapper v3.7® (Applied 

Biosystems).  

Microsatellite validation 

Four steps were taken to ensure a robust microsatellite analysis. 1) To estimate genotyping 

error rate (Bonin et al. 2004) a subset of 16 samples were randomly selected, DNA extracted 

and genotyped at all ten loci individually by an independent geneticist. 2) Samples with 

identical matching genotypes across all ten loci were assumed to be due to repeated sampling 

and were removed from the dataset (see Results). The average probability that two unrelated 

animals share the same genotype by chance alone, PI (probability of identity) and the more 
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conservative probability, PISIBS (probability of identity siblings) were calculated following 

Peakall et al. (2006). 3) MICROCHECKER version 2.2.3 (van Oosterhout et al. 2004, van 

Oosterhout et al. 2006) was used to screen the microsatellite dataset for genotyping errors 

such as null alleles, stuttering and large allele dropout. 4) Using Arlequin 3.1 (Schneider et 

al. 2000), we tested for deviation from Hardy-Weinberg equilibrium at each locus and for 

linkage disequilibrium between loci within each population and among populations. 

Sequential Bonferroni correction was applied to all multiple pairwise comparisons (Rice 

1989). 

mtDNA 

We amplified an approximately 700bp fragment of the control region proximal to the tPro 

RNA gene via PCR reaction using primers light-strand M13Dlp1.5 and heavy strand Dlp8 

(Garrigue et al. 2004). Amplifications were conducted in a final volume of 10µl at the 

following concentrations: 2.5mM MgCl2, 200µM dNTP, 0.4mM each primer, 0.25U Taq 

(New England BioLabs ®Inc.), 1 X PCR reaction buffer and 1µl DNA (approximately 10-

50ng). Temperature profiles consisted of an initial denaturing period of 2 minutes at 94˚C, 

followed by 35 cycles of denaturation at 94˚C for 30 seconds, annealing at 54˚C for 40 

seconds, and extension at 72˚C for 40 seconds. A final extension period for 10 minutes at 

72˚C was also included. Unincorporated primers were removed from PCR products using 

ExoSAP-IT® or Agencourt AMPure XP. Sequencing reactions with the PCR primers were 

run using a Big Dye terminator sequencing kit (Applied Biosystems) followed by the use of 

Agencourt CleanSEQ to remove unincorporated primers. PCR products were sequenced on 

an ABI 3130 automated sequencer.  

Forward and reverse sequences were manually edited, trimmed and aligned within 

Sequencher®4.8 (Gene Codes Corp.) against sequences of 470bps in length, representing the 
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panel of  haplotypes previously defined from the South Pacific (Olavarría et al. 2007). This 

region started at position six of the reference humpback whale control region sequence 

(GenBank X72202; see Baker and Medrano-Gonzalez 2002, Olavarria et al. 2007), and is 

considered to include more than 85% of the variation in the entire control region. 

Comparisons of sequences to identify polymorphic sites and haplotypes were conducted 

using GenAlEx 6.3 (Peakall and Smouse 2006). 

Statistical analysis 

For the purpose of presenting summary statistics, the samples from Eden and Tasmania were 

pooled and are collectively referred to as eastern Australian samples. For each microsatellite 

locus, the number of alleles, the number of private alleles, the observed heterozygosity and 

the expected heterozygosity for each geographic region was calculated using GenAlEx 6.3. 

Arlequin 3.1 (Schneider et al. 2000) was used to determine standard measures of mtDNA 

genetic diversity including haplotype frequencies, the number of unique haplotypes, the 

number of shared haplotypes, haplotype and nucleotide diversity, and the number of sequence 

polymorphic sites.  Haplotype and nucleotide diversity was calculated according to Nei 

(1987) and Tajima (1983).  

The extent of genetic differentiation among sampling locations and among the two putative 

populations was evaluated using Analysis of Molecular Variance (AMOVA) (Excoffier et al. 

1992) as implemented in GenAlEx 6.3, with statistical testing by random permutation (999 

permutations). For microsatellite data, an estimate of FST  (infinite allele model) was 

calculated as per Weir and Cockerham (1984), Peakall et al. (1995) and Michalakis and 

Excoffier (1996). Recent analyses suggest that these standard measures of differentiation may 

be poorly suited as estimators of population divergence for datasets in which allelic diversity 

is high (Hedrick 2005, Jost 2008, Meirmans and Hedrick 2011). Given the high variability of 
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the markers used here, Jost’s DEST, an unbiased estimator of divergence, was calculated using 

a modified version of the R package DEMEtics V0.8.0 (Jueterbock et al. 2010), with overall 

estimates of DEST calculated from individual loci using a harmonic mean approximation and 

statistical testing by bootstrapping with 1000 permutations. Compared with FST, DEST 

partitions diversity based on the effective number of alleles rather than on the expected 

diversity to give an unbiased estimation of divergence (Jost 2008). For mtDNA data, an 

AMOVA was performed at both the nucleotide and haplotype level. For these analyses, 

genetic distance matrices were constructed using individual pairwise differences at all 

polymorphic nucleotide sites, or haplotype differences among all individuals (Griffiths et al. 

2011). In keeping with the common practice in similar studies of humpback whales 

(Rosenbaum et al. 2004, Olavarria et al. 2006, Olavarría et al. 2007) we use the notation FST 

for haplotype differentiation and ΦST for nucleotide differentiation (e.g. Weir and Cockerham 

1984, Takahata and Palumbi 1985, Hudson et al. 1992). 

To evaluate the genetic data without the need to impose a priori population structure, we 

applied the Bayesian clustering approach implemented in the software STRUCTURE version 

2.3.1 (Pritchard et al. 2000) to the microsatellite dataset. We also repeated the analysis using 

the three sampling locations as priors to assess the influence of geography (LocPrior model; 

Hubisz et al. 2009). This method assesses the probability that K populations are represented 

within the data and assumes the loci are at Hardy-Weinberg equilibrium, and linkage 

equilibrium. An ancestry model of admixture and correlated allele frequencies were assumed 

among populations with 10,000 burn-in steps and 300,000 Markov Chain Monte Carlo 

repetitions. Five replicates for each number of populations (K =1 to 6) were performed to 

verify that the number of populations identified was consistent between runs. STRUCTURE 

output was summarized and evaluated using the software CorrSieve (Campana et al. 2011).  
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Potential differences in female and male dispersal rates between eastern and western 

Australia were investigated by calculating pairwise estimates of FST  among populations 

within and between each sex using an AMOVA in GenAlEx 6.3 for both genetic markers. 

For comparative purposes, Jost’s DEST was also calculated for microsatellite data.  DEST was 

not calculated for mtDNA data as the method is based on differences in interpopulation gene 

diversity (Jost 2008), and as such, does not take into account the evolutionary relationships 

between haplotypes (Meirmans and Hedrick 2011). 

To investigate genetic structure between the Australian populations and those of the South 

Pacific (including New Caledonia, Tonga, Cook Islands, French Polynesia and Columbia), 

we combined our mtDNA data with those presented by Olavarria et al. (2007) and calculated 

FST and ΦST for pairwise comparisons. A Mantel test was used to determine whether genetic 

differentiation increases with geographic distance between populations, with statistical testing 

based on 999 random permutations conducted in GenAlEx 6.3 (Smouse et al. 1986, Smouse 

and Long 1992). Correlation coefficients were calculated between FST and ΦST, and the 

geographic distances between all sampling locations. 

RESULTS 

Each of the ten microsatellite loci were found to be in Hardy-Weinberg equilibrium (Table 2) 

and pairwise comparisons between loci revealed no linkage disequilibrium (all values of P > 

0.01) after sequential Bonferroni correction. MICROCHECKER found no evidence of null 

alleles or stutter/short allele dominance effects across microsatellite loci, with null allele 

frequency estimates listed for each region in Table S1, Supplementary information. Repeat 

genotyping of 16 samples by an independent geneticist revealed two inconsistencies across 

320 alleles – an error rate of 0.6%. This rate is lower than suggested by the guidelines of the 
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IWC (IWC 2008) for systematic quality control in the use of microsatellite markers (≤ 10% 

error rate) for management decisions.  

Sample size and sex ratio 

The 364 samples generated 336 unique microsatellite genotypes suggesting the sample set 

included 28 duplicate samples (resampling the same individual within a pod) (Table 1), with 

no matches between sampling locations. After removal of the duplicate genotypes the 

average probability of identity calculated using all remaining genotyping was 6.8x10-14 

(PISIBS = 3.3x10-5) as calculated from the formulas shown in Peakall et al.(2005). These very 

low probabilities and each of the 28 pairs were also of the same sex and mtDNA haplotype 

justify the removal of the putative duplicate samples.  

The sex ratio of the overall sample was significantly biased toward males (197 males to 139 

females, χ2 = 10.39, P < 0.01) as were the eastern Australian samples separately (81 males to 

50 females, χ2 = 7.34, P <  0.01). The sex ratio of the western Australian samples did not 

differ significantly from parity (116 males to 89 females, χ2 = 3.56, P = 0.06) (Table 1). 

Genetic diversity 

Summary data for each microsatellite locus are presented in Table 2. Across all ten loci, the 

mean number of alleles per locus was 11.4 and 11.2 for eastern and western Australia, 

respectively, ranging from four (EV1) to 19 alleles (EV37). There were 120 alleles in total, 

eight of which were private to eastern Australia with six private to western Australia. 

Average expected heterozygosity across loci was similar for both western and eastern 

Australia (0.81 ± 0.03 and 0.80 ± 0.03, respectively). Random resampling of the western 

Australian dataset was conducted to generate ten datasets of the same size as eastern 
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Australia. The datasets showed average heterozygosities (0.81 ± 0.03) similar to eastern 

Australia. 

Of the 336 samples representing unique genotypes, 289 sequences were used in all 

subsequent analyses (104 from eastern Australia and 185 from western Australia). Within 

these sequences 65 polymorphic sites were identified (two indels, two transversions and 61 

transitions) which defined 73 haplotypes (Fig. S1, Supporting information). Of these 73 

haplotypes, 40 were found only in western Australia and 17 only in eastern Australia (Table 

3). Overall haplotype and nucleotide diversities were 0.98 ± 0.003 and 0.02 ± 0.01, 

respectively. The haplotype and nucleotide diversity for western and eastern Australia are 

presented in Table 3. Resampling of the western Australian dataset to generate ten datasets of 

equivalent size to the eastern Australian dataset showed similar diversity estimates (haplotype 

diversity = 0.97 ± 0.01, nucleotide diversity = 0.02 ± 0.01). 

Genetic differentiation and population structure analysis 

Pairwise comparisons between sampling locations in an AMOVA analysis found no 

significant differentiation between Eden and Tasmania for either the microsatellite (infinite 

allele model FST < 0.001, P = 0.5; DEST < 0.001, P = 0.6) or the mtDNA (haplotype level FST 

< 0.001, P = 0.4; nucleotide level ΦST < 0.001, P = 0.4) datasets. In contrast, significant 

differentiation was found between Eden and western Australia, and Tasmania and western 

Australia (see below). This result, together with the known timing of migration and satellite 

tracking data (Gales et al. 2009), suggests the whales sampled off Eden and Tasmania are 

likely to be from the same population and were therefore combined in all subsequent analyses 

to represent the eastern Australian population.  
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The AMOVA analysis found significant structure between the eastern and western Australian 

populations for mtDNA at the haplotype and nucleotide level (FST = 0.017, P = 0.001; ΦST = 

0.058, P = 0.001). For microsatellite data, there was also significant but low differentiation 

between populations using the infinite allele model of mutation (FST = 0.005, P = 0.001) and 

Jost’s DEST (DEST = 0.031, P = 0.001).  

When the STRUCTURE simulation was run without any priors on the geographic origin of 

samples, only one population was detected for microsatellite data (Pr(k) > 0.99). When the 

three sampling locations were provided as priors however, the results indicated evidence 

(highest posterior probability) for two populations consisting of western Australia versus the 

two eastern sampling locations combined (average estimated ln probability: K = 1: -13270; K 

= 2: -13250; K = 3: -13677; K = 4: -13503; K = 5: -13674; K = 6: -13990) (Fig. 2a). This 

result was confirmed by the CorrSieve calculation of ΔK and ΔFST, with maximum values for 

both equations at K = 2 (Fig. 2b).   

Pairwise analyses for microsatellite data showed significant structure between the two 

populations for males (FST = 0.007, P = 0.001; DEST = 0.04, P = 0.001) but not for females 

for FST (FST = 0.002, P = 0.07) after sequential Bonferroni correction. Significant 

differentiation however, was detected for females between populations using Jost’s DEST 

(DEST = 0.02, P = 0.01). In pairwise analyses of mtDNA, both males and females showed 

significant structure between populations at the haplotype and nucleotide level (females: FST 

= 0.02, P = 0.002; ΦST = 0.08, P < 0.001 and males: FST = 0.01, P = 0.002; ΦST = 0.04, P < 

0.001 after sequential Bonferroni correction). Due to the low levels of differentiation detected 

in these analyses, we did not examine whether the difference between FST male and FST 

female could be attributed to chance sampling, as the differences are unlikely to be 

significant. 
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After merging the datasets described here with mtDNA data described by Olavarria et al. 

(2007), which had no data from eastern Australia, we found low but significant 

differentiation between the eastern Australia population and all six breeding populations 

represented from Oceania at both the haplotype and nucleotide level after sequential 

Bonferroni correction (Table 4). The Mantel test revealed significant correlation between 

genetic and geographic distances suggesting a pattern of increasing genetic differentiation 

with increasing geographic separation (FST: RXY = 0.70, P = 0.03; ΦST: RXY = 0.74, P = 0.04).  

DISCUSSION 

Patterns of genetic differentiation among Australian humpback whales 

Both nuclear and mtDNA markers revealed low but significant differentiation between the 

eastern and western Australian humpback populations. This finding was supported by the 

detection of two populations by the Bayesian clustering analysis for both markers when using 

a priori information on sampling location. However, without priors the Bayesian clustering 

analysis failed to detect population subdivision which, as noted by other studies (e.g. Berry et 

al. 2004, Latch et al. 2006), is likely to be a consequence of the relative insensitivity of this 

approach when population differentiation is weak.  

High genetic diversity was found within both the eastern and western Australian populations 

for each marker. Such high diversity may be surprising given the known population 

bottlenecks, however, industrial whaling in the Southern Hemisphere was intense but 

relatively brief (approximately four decades) and the rates of recovery for both populations 

have been rapid (Bannister and Hedley 2001, Noad et al. 2008, Sremba et al. 2012, Salgado 

Kent et al. In press). These factors together with the long generation time and age structure of 
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humpback whales have all contributed to minimising the loss of genetic diversity (see Baker 

et al. 1993 for a similar conclusion).  

As expected, genetic differentiation between the eastern and western Australian humpback 

populations was stronger for mtDNA than nuclear DNA. Several factors likely contribute to 

this common pattern including the larger effective population size of nuclear genes, 

differences in the rate and mode of mutation (Palumbi and Baker 1994, Baker et al. 1998), 

and sex-biased dispersal (Avise 1995, Balloux et al. 2000). However, among Australian 

humpback whale populations there is limited evidence for strong sex biased dispersal despite 

the expectation of female philopatry and male-driven gene flow displayed by many migratory 

marine vertebrates (Greenwood 1983, Pardini et al. 2001, Bowen and Karl 2007, Engelhaupt 

et al. 2009), with similar levels of genetic differentiation at both marker types evident 

between the sexes. 

Is low population genetic differentiation a characteristic of Southern Hemisphere humpback 

whales? 

A summary of the known patterns of inter-population genetic differentiation among 

humpback whales of both the Northern and Southern Hemispheres is shown in Figure 1. In 

the Northern Hemisphere there is strong differentiation among the feeding areas of the North 

Pacific based on informative RFLP mtDNA ‘haplogroups’ (FST ~ 0.5-0.6), and the North 

Atlantic (KST ~ 0.04) (Palsbøll et al. 1995, Larsen et al. 1996, Baker et al. 1998) (Figure 1). 

Strong population differentiation has also been detected among breeding aggregations within 

the North Pacific for both RFLP ‘haplogroups’ (FST ~ 0.3) and nuclear intron alleles (FST ~ 

0.1), reflecting long-term isolation between the Hawaiian archipelago and the coast of 

Mexico (Baker et al. 1998) (Fig. 1).  
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By contrast to the Northern Hemisphere, we have shown that differentiation among the 

Australian populations is weak at both nuclear microsatellites and mtDNA. Similarly, in the 

South Atlantic the degree of genetic differentiation between putative breeding populations is 

also weak at nuclear and mtDNA markers (Rosenbaum et al. 2004, Pomilla et al. 2005). 

Studies of divergence among the breeding subpopulations of the South Pacific have not yet 

included nuclear markers. Nonetheless, mtDNA analysis indicates patterns of weak structure 

(Olavarría et al. 2007) (Fig. 1).  Even among distant breeding grounds, such as between 

eastern Australia versus Columbia FST values are low at mtDNA (FST ~ 0.06 compared to a 

mean FST ~ 0.3 in the North Pacific). Thus, the emerging evidence suggests that humpback 

whale populations of the Southern Hemisphere are characterized by weak differentiation. 

This indicates that at least historically, if not presently, there c extensive movement of 

humpback whales among populations in the Southern Hemisphere.  

Is non-genetic evidence consistent with the genetic evidence for extensive movement among 

Southern Hemisphere humpback whales? 

For both males and females there is non-genetic evidence for ongoing and wide-ranging 

movement across the Southern Hemisphere. For example, based on fluke matching, Stevick 

et al.(2011) reported the movement of an individual female humpback whale between the 

breeding grounds off Brazil and Madagascar, representing a distance of nearly 10,000 km. A 

photo-identification study over a six year period in the South Pacific reported four instances 

of movement of four out of six  male humpback whales between eastern Australia and the 

breeding grounds of New Caledonia (Garrigue et al. 2011). Similarly, using photo-

identification, Kaufman et al. (2011) reported movement of a single whale between the 

eastern and western Australian populations. 
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 The analysis of humpback whale song also provides another line of non-genetic evidence in 

support of gene flow among Southern Hemisphere populations. Male humpback whales sing 

throughout their migration from the feeding grounds to breeding grounds where the song is 

transmitted culturally among individuals and is thought to be a form of sexual display (Noad 

et al. 2000). All males in a population produce the same song, which changes over time, and 

all singers maintain the changes (Winn and Winn 1978, Payne et al. 1983). The differences in 

the theme composition of male song between humpback breeding populations within the 

same ocean basin are found to increase with distance, possibly reflecting at least historical 

migratory exchange between geographically close populations (Helweg et al. 1998).  

Humpback whale song from western Australia was found to replace the song of eastern 

Australia over only three breeding seasons in an analysis of song evolution (Noad et al. 

2000). Noad et al. (2000) suggested that this song evolution is mediated by the movement of 

a small number of males between populations although it is possible that singing on feeding 

grounds may also transfer song types between populations without the movement of 

individual whales (Mattila 1987). Nonetheless, this rapid transmission of song and change in 

theme composition support contact among males of these two populations somewhere in their 

annual migratory cycle or on the feeding grounds.  

It is evident that the non-genetic evidence is consistent with the genetic evidence for long-

range movement among Southern Hemisphere humpback populations and limited movement 

among populations of the Northern Hemisphere.  However, neither photo-ID or song analysis 

are accurate indices in estimating the magnitude of interchange among populations.  
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Why are the patterns of genetic variation among humpback whale populations different 

between the Northern and Southern Hemispheres? 

In the Northern Hemisphere, coastal wind-driven and curl-driven upwelling from continental 

land barriers have resulted in localized areas of nutrification and biological production 

(Chechley Jr. and Barth 2009), creating opportunities for the formation of segregated 

humpback whale feeding areas. These localized feeding areas are likely to have emerged 

through the formation of the Panama Land Bridge and as a result of long glacial and 

interglacial periods in the Arctic (Kojima et al. 2009). Long-term preference of males and 

females to localized feeding grounds combined with natal philopatry may explain the 

comparatively high levels of genetic differentiation between breeding and feeding 

populations. By contrast, in the high latitudes of the Southern Ocean, prey density is high and 

widely distributed throughout a broad, circumpolar area (Williams et al. 2010) where glacial 

barriers have not fluctuated to the same extent (Barker et al. 2009), increasing the potential 

for mixing and therefore gene flow among breeding populations. The extent to which 

humpback populations mix on these feeding grounds is therefore more likely to depend 

merely upon the distance between them (Hoelzel 1998).  

Although migratory behavior is thought to be socially-inherited from the mother to her calf 

(Clapham 1996), the mixing of breeding populations in the Southern Ocean may weaken 

natal fidelity, relative to that found in the Northern Hemisphere. Also, although it is expected 

juveniles rather than adults are more likely to move between populations while on the feeding 

grounds in the Southern Ocean (Clapham 1996), there is growing evidence of adult 

movement too. In addition to the Discovery marking and recovery described earlier 

(Chittleborough 1961, Dawbin 1966), photo-identification of humpback (Garrigue et al. 

2000, Garrigue et al. 2002, Garrigue et al. 2007, Kaufman et al. 2011) and other baleen 
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whales (Pirzl et al. 2009) have all revealed movement of mature whales between breeding 

populations. 

Estimating gene flow in the Southern Hemisphere? 

The very low genetic differentiation that appears to characterize humpback populations of the 

Southern Hemisphere, presents challenges for reliable estimates of the magnitude of gene 

flow. Allendorf et al. (2007) suggest that for reliable estimates of Nm based on FST, the levels 

of differentiation need to be moderate to large (FST > 0.05 to 0.10). Furthermore, they warn 

against interpreting Nm values literally at the low FST values found in this study. Similarly, 

more complex methods for estimating migration, such as the coalescent- and assignment-

based approaches are equally unreliable at low levels of genetic divergence (Faubet et al. 

2007, Palsbøll et al. 2010) such as those that characterize Southern Hemisphere humpback 

populations. For this reason, along with the fact that the accuracy of coalescent-based 

methods can also be seriously compromised by errors in sample size and mutation rate 

estimates (Karl et al. 2012), gene flow estimates were not included in the present study. 

We suggest that while the emerging evidence for gene flow among populations is compelling, 

additional development is required before we can quantify the magnitude of gene flow with 

any degree of certainty. With further development, novel approaches such as the kinship-

based analyses of the spatio-temporal distribution of related individuals may be able to yield 

more reliable estimates of current migration rates even at low levels of differentiation 

(Palsbøll et al. 2010). Alternatively, although requiring considerable time and effort, multi-

state capture-recapture models of current movement using photo-identification and/or 

genotype data may prove to be the most reliable method for quantifying the magnitude of 

gene flow. 
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TABLES 

Table 1. Samples collected from individual (N) humpback whales from three locations 
off the east and west coast of Australia. The number of duplicate samples is also shown, 
and the number of known female (F) and male (M) individuals.

Region Sampling Samples No. of N F M
Sampling site period duplicates

Eastern Australia 141 10 131 50 81
Eden 2008 63 2 61 14 47

June 45 2 43 8 35
Oct, Nov 18 0 18 6 12

Tasmania 2006-2008 78 8 70 36 34
July 1 0 1 0 1

Nov, Dec 77 8 69 36 33

Western Australia 223 18 205 89 116
Exmouth 2007

Sept, Oct
total 364 28 336 139 197
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Table 2. Genetic diversity in humpback whales from eastern and western Australia genotyped at ten loci. N = number of genotyped individuals 
per locus and HW = deviation from Hardy-Weinberg equilibrium (p-value); significant at P < 0.05 after adjustment for multiple comparison 
with the sequential Bonferroni test (Rice 1989) (Standard errors in parentheses).

Locus East West East West East West East West East West East West

EV14 131 203 9 8 1 0 0.725 0.754 0.748 0.778 0.747 0.459
EV37 131 202 19 19 2 2 0.916 0.931 0.913 0.904 0.364 0.316
EV96 131 202 13 12 1 0 0.863 0.876 0.848 0.869 0.872 0.682
GATA417 131 203 15 15 2 2 0.870 0.911 0.890 0.903 0.622 0.751
GT211 130 203 10 10 0 0 0.785 0.803 0.820 0.836 0.685 0.030
GT23 131 204 9 9 0 0 0.763 0.838 0.797 0.821 0.192 0.621
rw4-10 131 203 12 12 1 1 0.786 0.877 0.831 0.854 0.567 0.809
EV1 130 203 4 4 0 0 0.523 0.567 0.552 0.526 0.429 0.427
EV94 130 202 9 9 0 0 0.792 0.827 0.807 0.809 0.769 0.352
GT575 130 203 14 14 1 1 0.815 0.788 0.811 0.803 0.801 0.260

All loci 130.6 (0.2 ) 202.8 (0.2 ) 11.4 (1.3 ) 11.2 (1.3 ) 8 6 0.784 (0.034 ) 0.817 (0.033 ) 0.802 (0.031 ) 0.810 (0.034 ) 0.605 (0.069 ) 0.471 (0.077 )

N HW (p-value)Number of alleles Observed heterozygosity Expected heterozygosityNumber of private alleles

1 
2 
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Table 3. Variability in the mtDNA control region of humpback whales 
sampled along the east and west coasts of Australia (h  = haplotype diversity
and π = nucleotide diversity), N = number of samples used in analyses.

Region N h  ± SD π  ± SD

East 104 33 17 16 0.961 ± 0.006 0.018 ± 0.009
West 185 56 40 16 0.972 ± 0.004 0.019 ± 0.010
total 289 73 0.975 ± 0.003 0.019 ± 0.010

No. of 
haplotypes

No. of 
unique 

haplotypes

No. of 
shared 

haplotypes

1 
  2 
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Table 4. Pairwise comparisons (F ST  and Φ ST )  among the Australian  
populations and those of the South Pacific with respective stock definitions 
in parentheses. Data combines mtDNA control region sequences trimmed to a 
470bp consensus region from the present study with those of Olavarria et al.   
(2007). P -values based on statistical testing of 999 random permutations 
were all significant at P  < 0.005.

WA = western Australia; EA = eastern Australia; NC = New Caledonia;  
TG = Tonga; CI = Cook Islands; FP = French Polynesia; COL = Columbia.

a) F ST b) Φ ST

Region/Stock WA (D) EA (E1) Region/Stock WA (D) EA (E1)
WA (D) WA (D)
EA (E1) 0.014 EA (E1) 0.032
NC (E2) 0.015 0.012 NC (E2) 0.015 0.024
TG (E3) 0.017 0.011 TG (E3) 0.018 0.013
CI (F1) 0.028 0.031 CI (F1) 0.023 0.027
FP (F2) 0.040 0.044 FP (F2) 0.043 0.046
COL (G) 0.057 0.063 COL (G) 0.049 0.061  1 

  2 
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 1 

Table S1. MICROCHECKER (van Oosterhout et al . 2004) 
null frequencies for all microsatellite loci by population.

Locus Null Present
East West

EV14           no 0.0208 0.008
EV37           no -0.0008 -0.0143
EV96           no -0.0072 -0.0054
GATA417        no 0.0117 -0.0041
GT211      no 0.0216 0.02
GT23           no 0.0232 -0.0124
rw4-10      no 0.0283 -0.0137
EV1            no 0.032 -0.0467
EV94           no 0.0094 -0.0132
GT575          no -0.0067 0.009

Null Frequency

 2 

  3 
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FIGURES 1 

Figure 1. Worldwide humpback whale population structure and geographic 2 

distribution for both nuclear and mitochondrial DNA (mtDNA) markers (Baker et al. 3 

1993, Palsbøll et al. 1995, Larsen et al. 1996, Baker et al. 1998, Calambokidis et al. 4 

2001, Pomilla et al. 2004, Rosenbaum et al. 2004, Pomilla et al. 2005, Stevick et al. 5 

2006, Olavarría et al. 2007). 6 

(Three shared haplotypes between the North Pacific, North Atlantic and Southern 7 

Ocean from a total of 22. All P-values less than 0.05). 8 

* FST values in the North Pacific, reported in Baker et al. (1998), are likely to be 9 

inflated due to a reduced diversity within regions resulting from the choice of 10 

informative RFLPs or sequences. 11 

Figure 2. A. Proportional assignment of individual genotypes to each of the K = 2 12 

inferred clusters in the STRUCTURE admixture analysis. Grey and white bars 13 

represent proportions of membership to the eastern Australian and western Australian 14 

clusters, respectively, using the three sampling locations as priors. B. Delta K and 15 

delta FST values (ΔK and ΔFST) for each of the K inferred clusters, with a maximum 16 

value achieved at K = 2. 17 

Figure S1. Geographic disribution and relative position of variable nucleotides in 18 

humpback whale mtDNA control region defining 73 haplotypes. Dots (.) indicate 19 

matches with published reference sequence X72202 (Genbank), dashes indicate 20 

insertion/deletion events (Position 1 of alignment corresponds with position 6 of the 21 

reference sequence). The total number of each haplotype is indicated for both regions. 22 
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* For consistency with the South Pacific haploytpe dataset, this polymorphic site was 1 

not included in the genetic analyses however, including this locus does not change the 2 

number of haplotypes 3 

  4 
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*
ref T G G T C C T T T G T C A C G - - C C T T A G C C T T A C T T T T T G T C C A A A T A G T T T T T T G C C T A C T T C C G T T T -
1 4 4 C . . . T . . . C . . . . . . - - . T . . . . T T C C . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . . . . . G
2 1 1 . A . . . . . . . . . . . . . - - . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . C . . . . . . G
3 5 5 . A . . . . . . . . . . . . . - - . . . . . . T T . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . G
4 2 2 . A . . T . . . . . . . . . . - - . T . . . . . T . C . . . . C . C . . T . . . . . . A . C C . . . . T . . . . . . T . . . . . G
5 2 2 . . A . T T . . . . . . . . . - - . . . . . . T T . C . . . . . . . . . . . . G . . . . . C . C . . A T . . . . . . T . . . C . G
6 1 1 . . A . T T . . . . . T . . . - - . . . . . . T T . C . . . . . . . . . . . . G . . . . . C . C . . A T . . . . . . T . . . C . G
7 1 1 . . . C T . C . . . . A . . . - - . T . . . . . T C C . . . . . . . . C . . . . . . . . . . . . . . . T . . . . . . . . . . . . G
8 1 1 . . . . . . . C . . C . . . . - T . . . . . . . T . . . . . . . . . . C . . . . . . . . . . . . . . A . . C . . . . . . . . . C G
9 3 3 . . . . . . . C . . C . . . . - T . . . . . . . T . . . . . . . . . . C . . . . . . . . . . . . . . A . . C . . . . . . . . . . G
10 1 1 . . . . . . . C . . C . . . . - T . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . G
11 3 1 4 . . . . . . . C . . . . . . . - - . . . . G . T T . . G T . . . . . . . . . . . . . . A . . . . . . A T . . . . . . . . . . . . G
12 3 3 . . . . . . . C . . . . . . . - - . T . . G . T T . . . . . . . . . . . . . . . . . . . . . . . . . A T . C . . . C . . . . . . G
13 18 18 . . . . . . . C . . . . . . . - - . T . . G . T T . . . . . . . . . . . . . . . . . . . . . . . . . A T . . . . . C . . . . . . G
14 3 3 . . . . . . . C . . . . . . . - - . T . . G . T T . . . . . . . . . . . . . . . G . . . . . . . . . A T . . . . . C . . . . . . G
15 3 3 . . . . . . . C . . . . . . . - - . T . . G . T T . . . . . . . . . . . . . G . . . . . . . . . . . A T . . . . . C . . . . . . G
16 1 1 . . . . . . . C . . . . . . . - - . T . . G . T T . . . . . . . . . . . T . . . . . . . . . . . . . A T . . . . . C . . . . . . G
17 1 1 . . . . . . . C . . . . . . . - - . T . . G . T T . . . . . . . . . . . T . . . G . . . . . . . . . A T . . . . . C . . . . . . G
18 1 1 . . . . . . . . C . . A G . . - - . T . . . . . T C C . . . . . . . . C . . . . . . . . . . C . . . . T . . . . . . . . . . . . G
19 1 1 . . . . . . . . C . . . . . . T - . T . . . . T T . C . . . . . . C . . . . . . . . . . . C . . . . . T . C . . C . . . . C . . G
20 1 1 . . . . . . . . . . C . . . . - T . . . C . . . T . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . G
21 1 1 . . . . . . . . . . C . . . . - T . . . . . . . T . . . . . . . . . . C . . . . . . . . . . . . . . A . . . . . . . . . . . . C G
22 3 7 10 . . . . . . . . . . C . . . . - T . . . . . . . T . . . . . . . . . . C . . . . . . . . . . . . . . A . . . . . . . . . . . . . G
23 3 3 . . . . . . . . . . C . . . . - T . . . . . . . T . . . . . . . . . . C . . . . . . . . . . . . . . A T . . . . . . . . . . . . G
24 4 4 . . . . . . . . . . C . . . . - T . . . . . . . T . . . . . . . . . . . . . . . . . . . . . C . . . A T . . . . . . . . . . . . G
25 3 1 4 . . . . . . . . . . C . . . . - T . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . G
26 3 3 . . . . . . . . . . C . . . . - T . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . A . . . G . . . . . . . . . G
27 2 2 . . . . . . . . . . C . . . . - T . . . . . . T T . . . . . . . . . . C . . . . . . . . . . . . . . A . . . . . . . . . . . . . G
28 3 3 . . . . . . . . . . C . . . . - T . . . . G . T T . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . G
29 3 3 . . . . . . . . . . . . . . . - - . . . . . . . . . . . . . . . . . . C . T . . . . G . . . . . . . A . T . . . . . . . . . . . G
30 4 4 . . . . . . . . . . . . . . . - - . . . . . . . T . . . . . . . C . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . G
31 3 3 . . . . . . . . . . . . . . . - - . . . . . . . T . . . . . . . . . . . . . . . . . . . . C . . . . A . . . . . . . . . . . . . G
32 2 2 . . . . . . . . . . . . . . . - - . . . . G . T T . . . . . . . . . . . . . . . . C . A . . . . . . A T . . . . . . T . . . . . G
33 1 1 . . . . . . . . . . . . . . . - - . . . . G . T T . . . . . . . . . . . . . . . . . . . . C C . . . A T . . . . . . . . . . . . G
34 1 1 . . . . . . . . . . . . . . . - - . . . . G . T T . . . . . . . . . . . . . . . . . . . . C . C . . A T . . . . . . . . . . . . G
35 1 1 . . . . . . . . . . . . . . . - - . . . . G . T T . . G T . . . . . . . . . . . . . . A . . . . . . A T . . . . . . . . . . . . G
36 1 1 . . . . . . . . . . . . . . . - - . T . . . . T T C C . . . . . . . . C . . . . . C . . C C C . C . . T . . . . . . . . . . . . G
37 1 1 2 . . . . . . . . . . . . . . . - - . T . . G . T T . . . . . . . . . . . . . . . . . . . . . . . . . A T . . . . . C . . . . . . G
38 8 8 . . . . . . . . . . . . . . . - - . T . . G . T T . . . . . . . . . . . T . . . . . . . . . . . . . A T . . . . . C . . . . . . G
39 5 5 . . . . . . . . . . . . . . . - - . T . . G . T T . . . . . . . . . . . T . . . G . . . . . . . . . A T . . . . . C . . . . . . G
40 4 7 11 . . . . T . C . . . . A . . . - - . T . . . . . T C C . . . . . . . . C . . . . . . . . . . . . . . . T . . . . . . . . . . . . G
41 2 2 . . . . T . . C C . . . G . . - - . . . . . . T T . C . . . C . . . . . . . . G . . . . . C . C . . A . . . . . . . . . A . C . G
42 3 3 . . . . T . . C . . . A . . . - - . T . . . A . T C C . . . . . . . . C . . . . . . . . . . . . . . . T . . G . . . . . . . . . G
43 1 1 . . . . T . . C . . . . . . . - - . . . . . . T T . C . . . . . . . . . . . . G . . . . C C . C . . A T . . . . . . . . . . . . G
44 1 1 . . . . T . . . C A . A . . . - - . T . . . A . T . C . . . . . . . . C . . . . . . . . . . C . . . . T . . . . . . . . . . . . G
45 3 3 . . . . T . . . C . . A . . A - - . T . . . A . . . C . . . . . . . . C . . . . . . . . . . . . . . A T . . . . . . . . . . . . A
46 5 5 . . . . T . . . C . . A . . A - - . T . . . A . T . C . . . . . . . . C . . . . . . . . . . . . . . A T . . . T . . . . . . . . G
47 2 2 4 . . . . T . . . C . . A . . . - - . T . . . A . T . C . . . . . . . A C . . . . . . . C . . C . . . . T . . . . . . . . . . . . G
48 1 2 3 . . . . T . . . C . . A . . . - - . T . . . A . T . C . . . . . . . A C . . . . . . . . . . C . . . . T . . . . . . . . . . . . G
49 6 6 . . . . T . . . C . . A . . . - - . T . . . A . T . C . . . . . . . A C . . . . . . . . . . C . . . . T . . . . . . T . . . . . G
50 5 3 8 . . . . T . . . C . . A . . . - - . T . . . A . T . C . . . . . . . . C . . . . . C . . . . C . . . . T . . . . . . . . . . . . G
51 1 1 . . . . T . . . C . . A . . . - - . T . . . A . T . C . . . . . . . . C . . . . . . . . . . C . . . . T . . . . . . . . . C . . G
52 11 11 22 . . . . T . . . C . . A . . . - - . T . . . A . T . C . . . . . . . . C . . . . . . . . . . C . . . . T . . . . . . . . . . . . G
53 1 1 . . . . T . . . C . . A . . . - - . T . . . A . T . C . . . . . . . . C . . . . . . . . . . . . . . A T . . . T . . . . . . . . G
54 6 4 10 . . . . T . . . C . . A . . . - - . T . . . . . T C C . . . . . . . . C . . . . . . . . . . C . . . . T . . . . . . . . . . . . G
55 1 2 3 . . . . T . . . C . . A G . . - - . T . . . . . T C C . . . . . . . . C . . . . . . . . . . C . . . . T . . . . . . . . . . . . G
56 3 3 . . . . T . . . C . . . . . . T - . T C . . . T T . C . . . . . . . . . . . . . . . . . . C . . . . . T . C . . . . . . . C . . G
57 11 11 . . . . T . . . C . . . . . . - - . T . . . . T T C C . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . . . . . G
58 3 3 . . . . T . . . C . . . . . . - - T T . . . . . T . C . . . . . . . . . . . . . . C . A . C C . . C . T . . . . . . . T . . . . G
59 3 3 . . . . T . . . C . . T . . . - - . T . . . A . T . C . . . . . . . . C . . . . . . . . . . C . . . . T . . . . . . . . . . . . G
60 4 4 . . . . T . . . . . . A . . . - - . T . . . A . T C C . . . . . . . . . . . . . . . . . . . C . . . . T . C . . C C . . . . . . G
61 7 1 8 . . . . T . . . . . . A . . . - - . T . . . . . T C C . . . . . . . . C . . . . . C . . . . C . . . . T . . . . . . . . . . . . G
62 2 2 . . . . T . . . . . . A . T . - - . T . . . A . T C C . . . . . . . . . . . . . . . . . . . C . . . . T . C . . . C . . . . . . G
63 1 1 . . . . T . . . . . . . . . . - - . T . . . A . T . C . . . . . . . . C . . . . . . . . . C . . . . A T . C . . . . . . . C . . G
64 1 5 6 . . . . T . . . . . . . . . . - - . T . . . A . T . C . . . . . . . . C . . . . . . . . . C . . . . . T . C G . . . . . . C . . G
65 1 1 . . . . T . . . . . . . . . . - - . T . . . . . T . C . . . . C . . . . T . . . . . . A . . C . . . . T . . . . . . T . A . . . G
66 5 7 12 . . . . T . . . . . . . . . . - - . T . . . . T T C C . . C . . . . . C . . . . . . . . C . C . C . . T . . . . . . . . . . . . G
67 6 3 9 . . . . T . . . . . . . . . . - - . T . . . . T T C C . . . . . . . . C . . . . . C . . C C C . C . . T . . . . . . . . . . . . G
68 2 2 . . . . T . . . . . . . . . . - - . T . . . . T T C C . . . . . . . . C . . . . . C . . . C C . C . . T . . . . . . . . . . . . G
69 9 5 14 . . . . T . . . . . . . . . . - - . T . . . . T T C C . . . . . . . . . . . . . . . . . . . C . C . . T . . . . . . . . . . . . G
70 1 1 . . . . T . . . . . . . . . . - - . T . . . . T T C C . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . C . . . . . . G
71 3 3 . . . . T . . . . . . . . . . - - . T . . . . T T C C . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . T . . . . . G
72 1 1 . . . . T . . . . . . . . . . - - . T . . . . T T C C . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . G
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