Remote Sensing in the Southern Ocean: Overview of existing techniques and future directions

Patrick N. Halpin Jason Roberts Marine Geospatial Ecology Lab Duke University Marine Lab

Outline:

- Problem
- Scales of Remote Sensing
- Southern Ocean Scale Remote Sensing
 - SST
 - Ocean Color / Productivity
 - Ice
 - SSH
 - Oceanographic Features
 - Assimilating Oceanographic Models: HYCOM
- In-situ Scale Remote Sensing
 - Active sonar prey mapping
 - Ship-born ice image analysis
- Conclusions / Discussion

Problem:

In order to better understand whales in the Southern Ocean we need to be able to actively observe their physical and biological environment at multiple spatial and temporal scales.

Remote sensing provides:

- Covariates for habitat and density models
- Observations of productivity and prey distributions
- Monitoring & validation data

Aggregation of Remote Sensing images Development of annual or monthly climatologies

A decadal climatology may require >10⁵ images

Raw daily MODIS – TERRA image vs. Monthly SST composite

The "real" Southern Ocean

A composite view of surface conditions

Outline:

- Problem
- Scales of Remote Sensing
- Southern Ocean Scale Remote Sensing
 - SST
 - Ocean Color / Productivity
 - Ice
 - SSH
 - Oceanographic Features
 - Assimilating Oceanographic Models: HYCOM
- In-situ Scale Remote Sensing
 - Active sonar prey mapping
 - Ship-born ice image analysis
- Conclusions / Discussion

Cumulative Sea Surface Temperature (SST)

Terra MODIS L3 SST

cumulative climatology from daily data 1999 to present

south pole stereographic using a cell size of 2.325 km, which is the effective resolution of the original MODIS L3 data at latitude 60 S

NASA GSFC OceanColor Group http://oceancolor.gsfc.nasa.gov/

Seasonal (91 day) Sea Surface Temperature (SST)

Chl_a Cumulative Average

MODIS Aqua L3 chlorophyll

cumulative climatology from daily data June 2002 to present

south pole stereographic using a cell size of 2.325 km, which is the effective resolution of the original MODIS L3 data at latitude 60 S

NASA GSFC OceanColor Group (http://oceancolor.gsfc.nasa.gov/

Seasonal (91 day) Chl_a Average

days 262 - 352

days 353 - 079

Cumulative Mean Sea Surface Height (SSH)

Aviso DT-MADT SSH 7-day 1/3 degree global 1993-2010

http://www.aviso.oceanobs.com/en/index.html

Seasonal (91 day) Mean Sea Surface Height (SSH)

days 171 - 261

Cumulative Mean Sea Ice

The AMSR-E Sensor stopped responding in October 2011

Spreen et al. (2008) documentation on the sea ice data, see: ftp://ftp-projects.zmaw.de/seaice/AMSR-E_ASI_IceConc/AMSRE-ASI-Info.txt

Seasonal (91 day) Mean Sea Ice

Outline:

- Problem
- Scales of Remote Sensing
- Southern Ocean Scale Remote Sensing
 - SST
 - Ocean Color / Productivity
 - Ice
 - SSH
 - Oceanographic Features
 - Assimilating Oceanographic Models: HYCOM
- In-situ Scale Remote Sensing
 - Active sonar prey mapping
 - Ship-born ice image analysis
- Conclusions / Discussion

Identify fronts in SST images

MGET: Marine Geospatial Ecology Tools Roberts *et al.* 2010

Cayula and Cornillion (1992) edge detection algorithm

Step 1: Histogram analysis

Temperature

Step 2: Spatial cohesion test

Strong cohesion → front present

sion Weak cohesion sent → no front ArcGIS model

Example output

Night-time SST Front Probability

Cumulative Mean Eddy Kinetic Energy

computed from Aviso 7-day 1/3 degree global DT-MADT Ref geostrophic currents, 1993-2010

Eddy centroids & tracks

Red = cyclonic Blue = anticyclonic

Outline:

- Problem
- Scales of Remote Sensing
- Southern Ocean Scale Remote Sensing
 - SST
 - Ocean Color / Productivity
 - Ice
 - SSH
 - Oceanographic Features

Assimilating Oceanographic Models: HYCOM

- In-situ Scale Remote Sensing
 - Active sonar prey mapping
 - Ship-born ice image analysis
- Conclusions / Discussion

HYCOM SST data (2011-03-21 to 2012-03-21) from the HYCOM +NCODA Global 1/12 Degree Analysis (http://hycom.org/dataserver/glb-analysis/expt-90pt9)

Outline:

- Problem
- Scales of Remote Sensing
- Southern Ocean Scale Remote Sensing
 - SST
 - Ocean Color / Productivity
 - Ice
 - SSH
 - Oceanographic Features
 - Assimilating Oceanographic Models: HYCOM
- In-situ Scale Remote Sensing
 - Active sonar prey mapping
 - Ship-born ice image analysis
- Conclusions / Discussion

Duke University lead 2 recent expeditions to Antarctica

2009 April – June Field Season (RV L.M. Gould) 2010 May – June Field Season (RV NB Palmer)

ship active acoustics ADCP / EK60

Active acoustics: to measure the krill (3) towed "fish"

EK60 active acoustics prey mapping RHIB Boat...

Wilhelmina Bay tag & prey boat tracks

map by P.N. Halpin 5/16/2010

Fine-scale prey mapping in 3D

Fine-scale prey mapping in 3D

Outline:

- Problem
- Scales of Remote Sensing
- Space / Time context
- Southern Ocean Scale Remote Sensing
 - SST
 - Ocean Color / Productivity
 - Ice
 - SSH
 - Oceanographic Features
 - Assimilating Oceanographic Models: HYCOM
- In-situ Scale Remote Sensing
 - Active sonar prey mapping
 - Ship-born ice image analysis
- Review / Discussion

Two late-season survey years:

2010

Significant differences in surface ice cover

UTM Zane 2011

Humpback whale sitings Wihelmina Bay May 1-2, 2009 vs. May 12-14, 2010

Biomass density estimates from ADCP Backscatter

Coordinate system:

UTM Zone 20S WGS84

LMG 0905 B-249-L

15 Kilometers 7.5 3.75

Humpback whale sitings Wihelmina Bay May 1-2, 2009 vs. May 12-14, 2010

Humpback group size Biomass density estimates from ADCP Backscatter

Coordinate system:

UTM Zone 20S WGS84

LMG 0905 0 B-249-L

15 Kilometers 3.75 7.5

Humpback whale sitings Wihelmina Bay May 1-2, 2009 vs. May 12-14, 2010

2010 Visual Surveys: Percent Ice

LMG 0905 B-249-L

009758.5 Kilometers ludud

Coordinate system:

UTM Zone 20S WGS84

00.003060.12 Kilometers hulul

Coordinate system:

UTM Zone 20S WGS84

NBP 1003 B-249-N

5 000.2040 Luuluul

00002408 Kilometers

Coordinate system:

UTM Zone 20S WGS84

0

B-249-N map by P.N. Halpin 5/16/2010

UTM Zone 20S WGS84

B-249-L

hulud

LMG 0905 00. B-249-L LL

00.51 2 Kilometers

Coordinate system:

UTM Zone 20S WGS84

B-249-N map by P.N. Halpin 5/16/2010

NBP 1003

Outline:

- Problem
- Scales of RS
- Space / Time context
- Southern Ocean Scale RS
 - SST
 - Ocean Color / Productivity
 - Ice
 - SSH
 - Oceanographic Features
 - Assimilating Oceanographic Models: HYCOM
- In-situ Scale Remote Sensing
 - Active sonar prey mapping
 - Ship-born ice image analysis
- Review / Discussion

Conclusions

New innovations in remote sensing are being developed at two distinct scales:

Conclusions

Duke Antarctica

Elliott Hazen

Lindsey Peavey

Andy Read

Ari Friedlaender

Doug Nowacek Pat Halpin

Reny Tyson

Dave Johnston

NSF